Evolution of Vertebrate Transient Receptor Potential Vanilloid 3 Channels: Opposite Temperature Sensitivity between Mammals and Western Clawed Frogs
نویسندگان
چکیده
Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.
منابع مشابه
Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates.
Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA...
متن کاملEvolution of thermoTRP ion channel homologs in vertebrates.
In mammalian thermosensation, nine temperature-sensitive ion channels that are activated by distinct temperature thresholds have been identified as thermosensors. These ion channels belong to the transient receptor potential (TRP) superfamily and are referred to as "thermoTRPs" (TRPV1, TRPV2, TRPV3, TRPV4, TRPM2, TRPM4, TRPM5, TRPM8, and TRPA1). To elucidate the evolutionary processes of thermo...
متن کاملCALL FOR PAPERS Comparative Genomics Evolution of thermoTRP ion channel homologs in vertebrates
Saito S, Shingai R. Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genomics 27: 219–230, 2006. First published August 22, 2006; doi:10.1152/physiolgenomics.00322.2005.—In mammalian thermosensation, nine temperature-sensitive ion channels that are activated by distinct temperature thresholds have been identified as thermosensors. These ion channels belong to the transient re...
متن کاملSingle-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3.
Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor tr...
متن کاملInteraction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats
Introduction: Previous studies have shown that the cannabinoid system is involved in anxiety.In addition, transient receptor potential vanilloid type-1 (TRPV1) channels are new targets for the development of anxiolytics. The present study investigated the possible interaction between the cannabinoid and vanilloid systems on anxiety-like behavior in rats. Methods: Four different groups of male ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011